Rehabilitation of Buried Bridges, Culverts & Storm Sewers


corrugated steel pipe institute

Ron Prychitko, P.Eng. Sr. Region Engineer - Armtec Inc. ron.prychitko@armtec.com

Ray Wilcock Executive Director - CSPI rjwilcock@cspi.ca

Agenda

About the CSPI > Applications, Shapes, Profiles Case Studies Shamrock Lake Culvert Rehab. ➢ Howard Ave. Reline >Hwy 401, 410 & 403 ON Reline >Questions

corrugated steel pipe institute

armtec

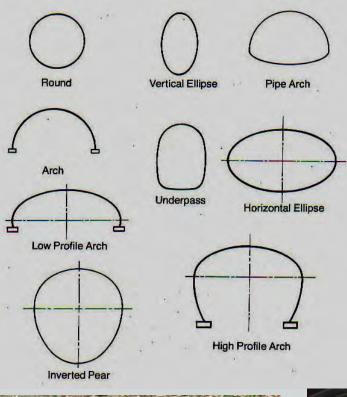
Atlantic Industries Limited

Arcelor Mittal

Structural Plate Applications

Bridge Rehabilitation

Grade Separations


Culvert Rehabilitation

Wildlife Underpasses

Vertical Caissons / Shafts

Shapes

Up to 30+ Meter Spans

Eleven Corrugations

- 38 X 6.5 mm
- 68 x 13 mm
- 19 x 19 x 190 mm
- 76 x 25 mm
- 125 x 25 mm
- 152 x 51 mm
- 180 x 52 mm
- 230 X 64 mm
- 381 x 140 mm
- 400 x 150mm
- 500 x 237mm

CSP Spiral Rib

CSP

CSP

CSP

Howard Ave. Reline

Hwy 401, 410 & 403 ON

Reline

Structural Plate SPCSP

Structural Liner Plate

Structural Plate

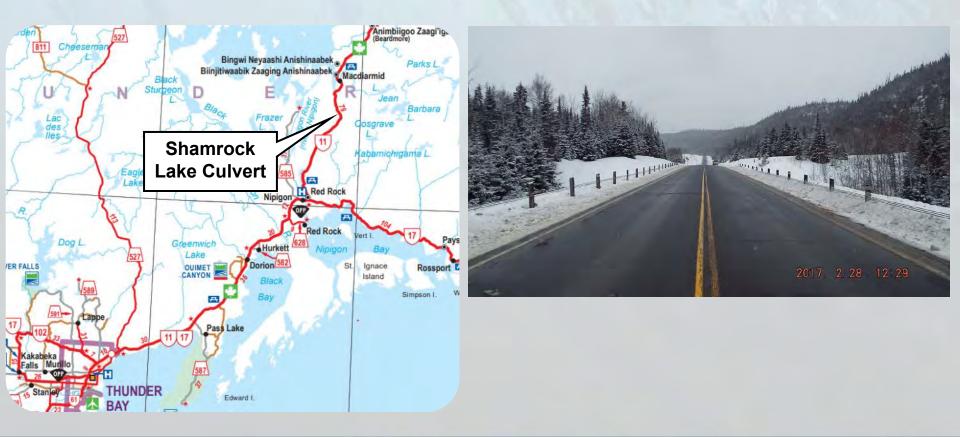
- **Deep Corrugated Plate**
- **Deep Corrugated Plate**
- **Deep Corrugated Plate**

Shamrock Lake

Culvert Rehab

Full Peripheral Relining

- 1. Full reline can minimize project costs and time
- 2. Minimizes traffic disruption
- 3. Winter installations typical (low flows)
- 4. Restore full structural capacity



corrugated steel pipe institute

Ron Prychitko, P.Eng. Sr. Region Engineer - Armtec Inc. Ron.Prychitko@Armtec.com

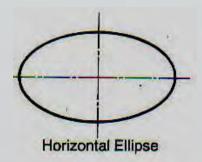
Case Study #1 Shamrock Lake Culvert Rehabilitation Hwy 11 – 31KM north of Nipigon ON

- Background
- Existing Structure
- Constructed in 1938
- 76 m long
- 4.9 m span, 2.0 m rise cast-in-place open footing culvert
- 16.3 m cover

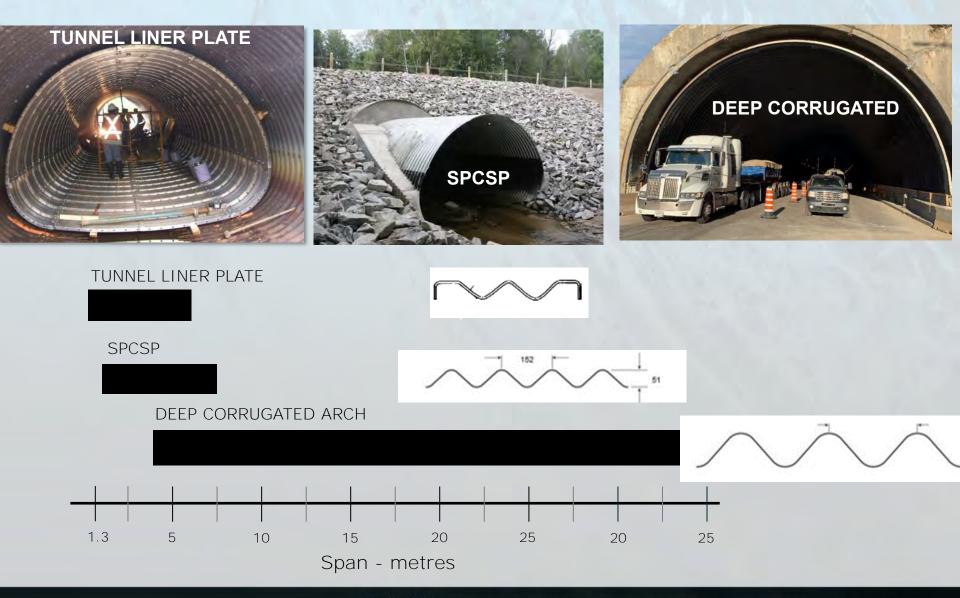
Background – Condition Assessment \\\)

Concrete barrel in very poor condition:

- Concrete deterioration;
- Spalling & exposed rebar throughout;
- Large cracking; and
- Settlement of approximately 0.36 m at center.


Background – Additional Constraints

- Located within Nipigon Palisades Conservation Reserve
- Critical spawning habitat for Brook Trout within culvert
- Unknown depth of concrete footing


Criteria – Trenchless Liners

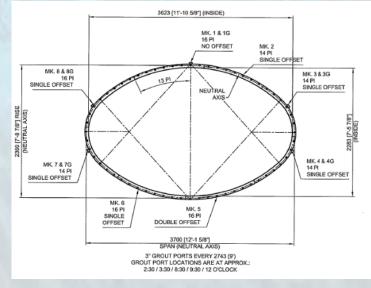
- Liner Pipe needed to
 maximize hydraulic capacity
- Minimize increase in velocity
- Ensure section was structurally adequate
- Full Periphery Horiz. Ellipse Liner balanced these criteria

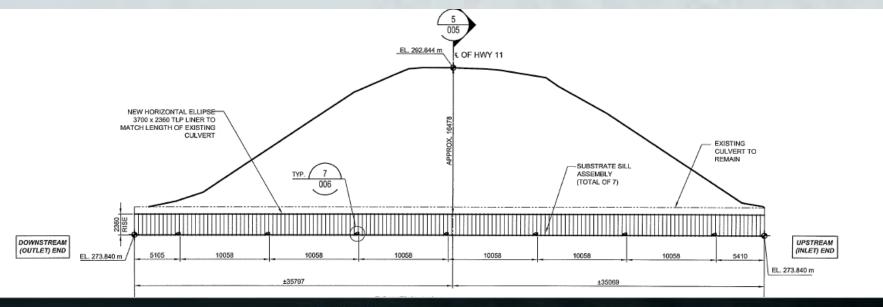
Liner Options Considered

Product Details

Tunnel Liner Plate

- Assembled from the Inside
- 180 mm x 52 mm Corrugation
- Reline Applications
- Custom Shapes

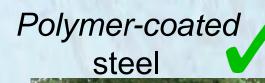




Shamrock Lake Culvert Reline

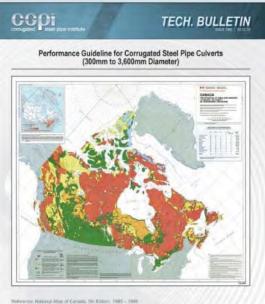
• Shape: 3700 mm x 2360mm Horiz. Ellipse

- Height of cover > 16m
- Length of Reline = 76m



Coatings Available

Galvanized steel



Aluminum

PERFORMANCE GUIDELINES

- Know the Water Test the Water
- Know the Flow / Abrasion
- Know the Environment
- Define DSL
- Match EMSL

Historence: Needonal Analis of Celhada, Still Edition, 1995 - 1995

The above map illustrates the vanability in soll chemistry across Canada, Ragional characteristics should be considered when tereoring a suitable COP provimaterial.

an resur go salaminglatimapatantiwastitiani terseverentiscologyment ()57

CREATER CONTRACTOR CONTRACTOR

cspi.ca

TECH. BULLE

Performance Guideline for Buried Steel Structures

1.0 Introduction

The purpose of this Guideline is to assist practitioners in selecting appropriate structure type, end protection details and the optimum coating and plate thickness combination to enable corrugated steel plate structures to meet design service life specifications. Consideration of the application exposure, location and the site specific environmental conditions are key parameters when estimating the material service life of buried flexible steel structures. This guideline is intended to supplement local knowledge of the performance of buried plate structures.

Common applications for Corrugated Plate, some of which are shown in Figure 1 pictures, include:

- · Culverts on watercourses Full periphery round, pipe-arch and elliptical pipes
- Short span bridges on watercourses Open bottom arches and box shapes
- Grade separations (non-watercourse applications) Vehicular, pedestrian or wildlife underpasses or overpasses, utility crossings

Figure 1 - Structural Plate Installations

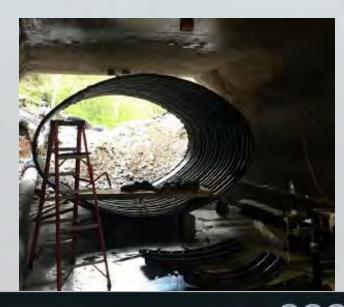
rencourse 0

PEDES TRIAN UNDERPAS

Corrugated steel plate can be exposed to a variety of environmental conditions, as shown in Table 1.

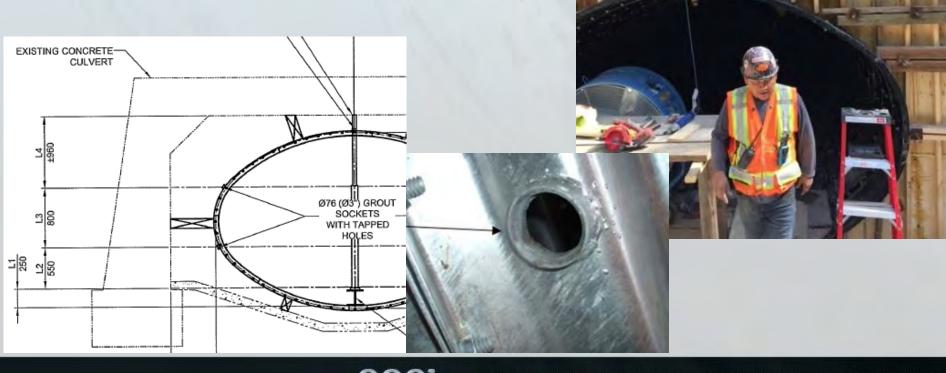
Liner Assembly & Bracing

- Shoring (house) jacks installed every 4.5 ft
- W beam installed at the invert



Assembly

Bolt Torque check


- Minimum Random Test-10% bolts
- ✓ Require 95% minimum pass specification

Grouting Check list

- Bulkheads progressively formed attach end of the structure.
- Grout Ports 5 located every 9.0 ft.
- 4 Grout Lifts
- Non-shrink grout: 2- 5 MPa

SIXTY THREE YEARS OF EDUCATION & PROMOTION

GENERAC

Grouting

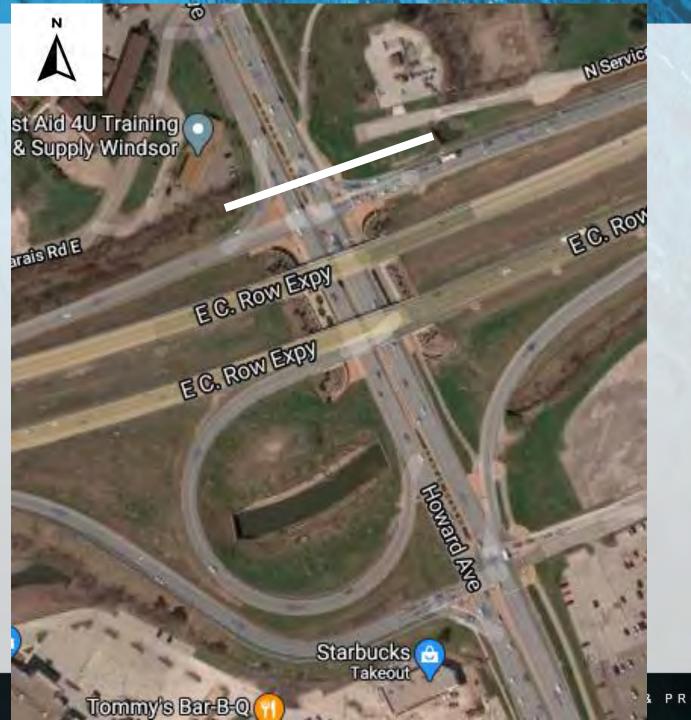
Monitor During Grouting

- Check grout elevation
- Monitor structure shape
- Monitor grout consistency
- Clean grout seepage
- Check venting (final grout lift)

Summary – Shamrock Lake Reline

- Cost savings
- No disruption to traffic. No detours
- Ideal product for inside assembly
- Custom shape optimized hydraulics
- <u>Structural Liner</u>
- Polymer Coating for long service life
- Lightweight plates eliminates the need for heavy equipment
- Economic procurement to site
- Lowest carbon footprint solution

Case Study #2


Howard Ave. Reline (Windsor ON)

Location:Howard Ave. at EC Row ExpresswayPipe:2m span Pipe-Arch SPCSP (Galv.) - 1975Length:~100 meters

Challenges:

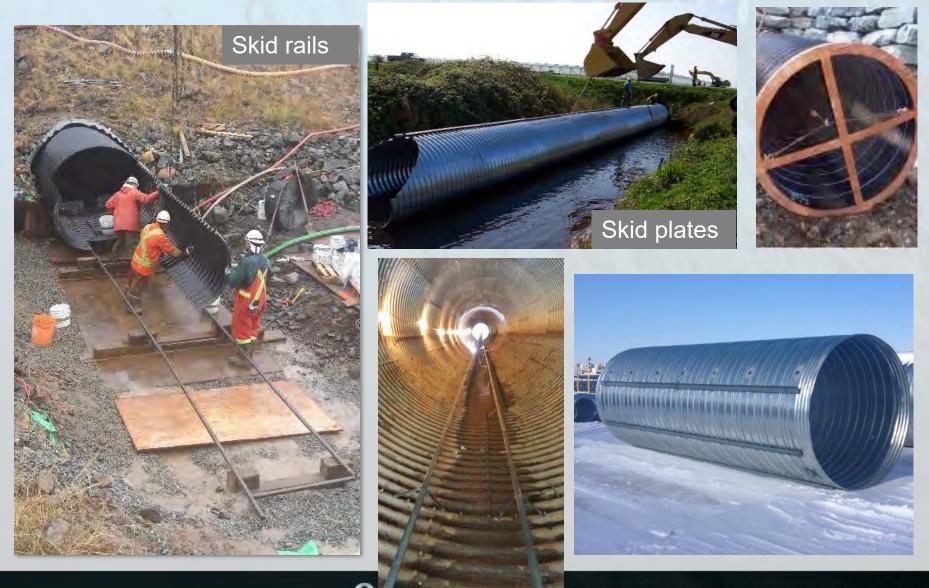
- High traffic intersection
- High usage of De-icing chemicals
- Downstream from a junk yard (corrosive water)

PROMOTION

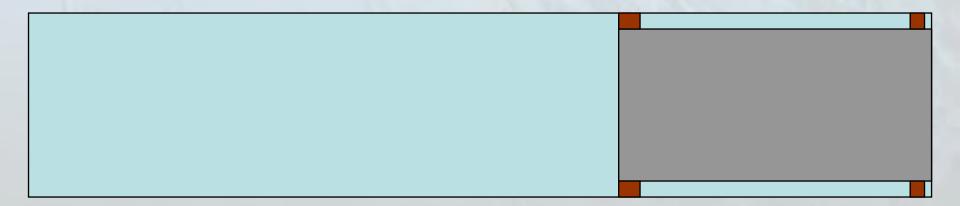
Howard Ave - Reline

Existing Culvert – Invert deterioration

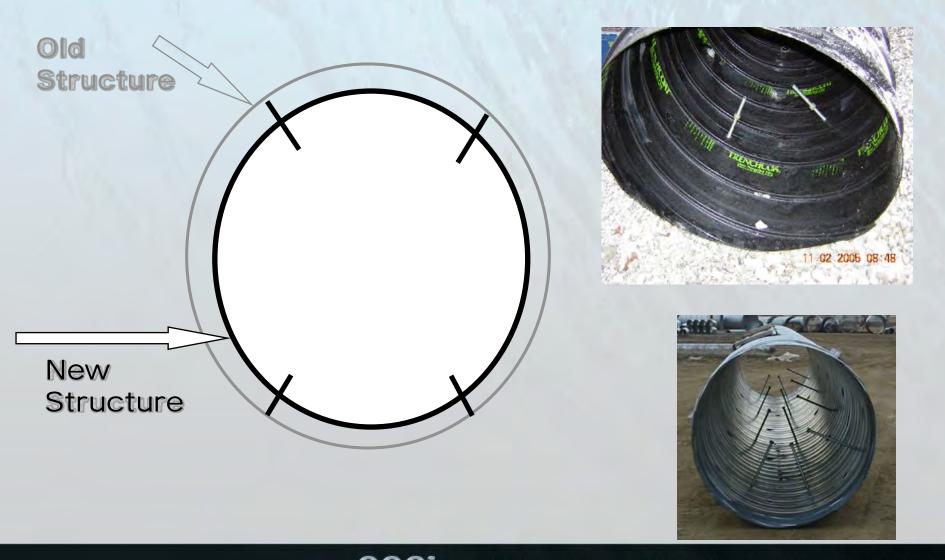
Howard Ave. Reline



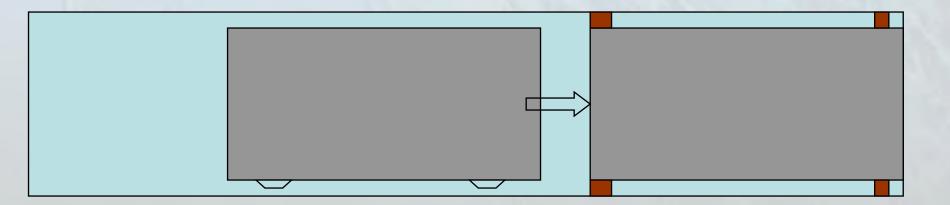
Relined:2005Pipe:1200mm diameter Spiral Rib Pipe (SRP)Coating:PolymerHydraulics:Manning's n of .012Method:Sliplining


Howard Ave - Reline

Various Methods of Inserting Reline Pipe



Block the 1st Section



Profile View

Adjusting Rods set Line and grade

Place the Next Section

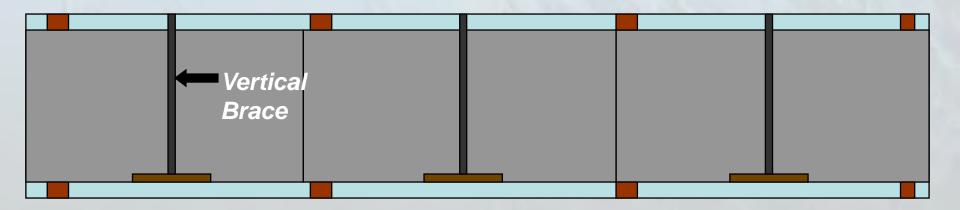
Profile View

Install Internal Expanding Band & Gasket

Profile View

Install Internal Expanding Coupler Band & Gasket

Repeat Until All Sections Are Installed



Profile View

SOI SIXTY THREE YEARS OF EDUCATION & PROMOTION

Install Bracing

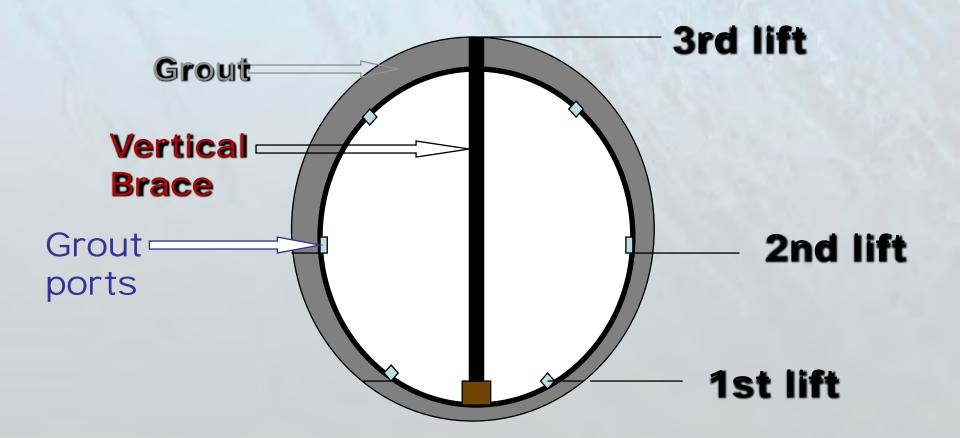
Prevents Flotation During Grouting

Profile View

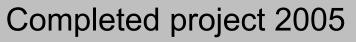
SOI SIXTY THREE YEARS OF EDUCATION & PROMOTION

Howard Ave Windsor

Pipe is secured in-place using screw (house) jacks


Grout Placement


CSOI SIXTY THREE YEARS OF EDUCATION & PROMOTION



CSOI SIXTY THREE YEARS OF EDUCATION & PROMOTION

Grouting

Howard Ave - Reline

CSDI SIXTY THREE YEARS OF EDUCATION & PROMOTION

Inspection date: PH: Chlorides:

March 2017 6.0 363 ppm

Howard Ave - Reline

PosiTector®

Coating Thk Min. 10 mils

corrugated steel pipe institute

Ray Wilcock Executive Director - CSPI rjwilcock@cspi.ca

Case Study #3 HWY 401, 410 & 403 ON Reline

Built Date:	1974
Location:	Intersection of Highway 401, 410 & 403
	An average of 320,000 vehicles per day
Existing Pipe:	3050mm RCP storm sewer
Length:	200 meters
Culprit:	Road Salt
Owner:	МТО
Consultant:	Morrison Hershfield
Contractor:	Underground Services

Replacing the sewer was not an option given the impact on transportation, commerce and public opinion.

Kitchen Crafters.ca

Ontario 4

Ampere Metal Finishing

403

Ontatio 401 Express

PPG Aerospace

CGD - Kitchen Cabinets & Countertops

All Graphic

Dewey College

press

AGAT Laboratories

410

CRACKED AND CORRODED RIGID SEWER PIPE

401, 410 & 403 ON Reline

Solution:

Reline in 2004

Material:

2850mm Galvanized CSP Coal tar epoxy coating on the invert 125 x 25mm profile with 4.2mm gauge Composite drainage fabric was installed outside the CSP at joint connections

Challenge:

Installation

Damaged section of the RCP was over 150 meters from the outlet, under the main traveled portion of the 401 CSP had to be fabricated in 3.15 meter lengths to negotiate the bends in the existing sewer Internal couplers were used

Fork Lift Truck with carrying frame

CSP WITH SCREW JACKS AND GROUT PLUG

Time to Reline

> 3 months versus a planned target of 6 months

CSOI SIXTY THREE YEARS OF EDUCATION & PROMOTION

Reline Procedure (Small and large diameter pipes) Available on the CSPI website at www.cspi.ca

ce instante

TECH. BULLETIN

Reline Procedure for Small Diameter Culverts Using Corrugated Steel Pipe (For reline of culvert pipes 1000 mm Diameter and Smaller)

Replacing deteriorated culverts and storm servers under a heavily traveled roadway or deep fli can be an expensive and disruptive operation. The detouring of traffic required for conventional reconstruction can create significant costs. and public inconvenience. Relining with comugated steel pipe will minimize project cost and time. Access is restricted in smaller diameter pipes so all cleaning, pipe insertion, coupling and grouting is done from the pipe ends or access points. Long lengths of strong, rigid, securely coupled CSP are ideal for this procedure. Designed to carry the full load. above the pipe the total wait thickness of CSP remains relatively thin to optimize effective end area for maximum flow capacity

POLYMER LAWINGTED CAP RELING PIPE FULLY BROUTS

Procedure

The following are suggestions only to assist qualified engineers and contractors in developing a construction plan. Each project is unique and will benefit from local experience and expertise.

- 1. Survey the existing host pipe noting unusual Inward projections, deflections and damage. Take measurements to determine the largest liner size that will fit inside the host pipe allowing from for outside clameter of liner pipe, side rails and approximately 50mm minimum grout space all around. Review the external working area, noting obstructions that may limit pipe lengths, equipment size, access and material storage.
- 2. Review the flow characteristics of the reduced diameter liner pipe and ensure that hydraulic requirements will be met. CSP is available in a variety of comugations to meet both smoothness (Manning nivalue) and structural reaurements.
- 3. Drain the water and clear the host pipe of silt and debris removing any obvious obstructions. Water needs to be controlled with coffendants, pumps, and piping as appropriate. Insure that all environmental requirements are met.

HE DUCTORY PORTAGE TO CAN READ AND STADDAUGHED ONLY COLUMNED BY ALLASTIC ARGINE, HUMANI, AG ARCHIDREFTE, HUMANI, ALLAST VILLALM AND VARIABLE OF THE DOCUMENT OUTSIDE OF CERTIMANISMENT WITHOUT ANYWORK, INCO. COM, ATLANTIC, AND THE OR HOMESLI, IN PROVINTING OF CERTIFIC PROVINTIES OF CERTIFICATION OF CERTIFIC PROVINTIES OF CERTIFICATION OF CERTIFICATIONO OF CERTIFICATION OF CERTIFICATION OF CERTIFICATION OF CERTIFICATIONO OF CERTIFICATION OF CERTIFICATION OF CERTIFICATION OF CERTIFICATIONO OF CERTIFICATI

452 615HOR STILLET UNIT 24 CAMBRIDGE ON NON 1VS

City bo-and + pill 600-0001 Integration Versionplan

TECH. BULLETIN

Reline Procedure Using Corrugated Steel Pipe and Corrugated Steel Pipe Arch (Liners 1000 mm Diameter and larger)

Replacing a deteriorated culvert, storm server or small bridges under a roadway can be an expensive and disruptive operation. High costs are associated with dempilition and removal of the existing structure. The disruption of traffic required for conventional reconstruction can create significant costs and inconvenience. Relining with convegted steel pipe will minimize project cost and time.

Procedure

The following are suggestions only to assist qualified engineers and contractors in developing a construction plan. Each project is unique and will benefit from local experience and expertise.

- 1. Survey the existing or host structure noting unusual Inward projections and damage. Take measurements to determine the targest liner size that will fit inside the host allowing room for pipe walls and bolts, skid raits and approximately 50 mm, minimum all around for grout. Survey the external working area, noting obstructions that may limit. pipe lengths, equipment size and material slorage.
- 2. Dewaler and clear the host pipe of debris removing any obvious obstructions. Water needs to be controlled with cofferidams, pumos, and ploing as appropriate. Insure that all environmental requirements are met.

52 MISHOR STREET UNIT 24 DAMENDGE ON NOR 4VE

(\$10) (\$6-800 F (\$10) (\$6-800 F (\$68) argins | manufagline

SIXTY THREE YEARS OF EDUCATION & PROMOTION

Questions

<u>Rehabilitation of Buried Bridges,</u> <u>Culverts & Storm Sewers</u>

corrugated steel pipe institute

Ron Prychitko, P.Eng. Sr. Region Engineer - Armtec Inc. Ron.Prychitko@Armtec.com

Ray Wilcock Executive Director - CSPI rjwilcock@cspi.ca

